ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Перед Шариком лежит бесконечное число котлет, на каждой сидит по мухе. На каждом ходу Шарик последовательно делает две операции:

1) съедает какую-то котлету вместе со всеми сидящими на ней мухами;

2) пересаживает одну муху с одной котлеты на другую (на котлете может быть сколько угодно мух).

Шарик хочет съесть не более миллиона мух. Докажите, что он не может действовать так, чтобы каждая котлета была съедена на каком-то ходу.

Вниз   Решение


Как определить функцию  ln z  для комплексного аргумента z?

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 97]      



Задача 61115  (#07.051)

 [Формула Эйлера]
Темы:   [ Комплексная экспонента ]
[ Число e ]
[ Предел функции ]
Сложность: 4+
Классы: 10,11

Пусть a и b – действительные числа. Определим показательную функцию на множестве комплексных чисел равенством     Докажите формулу Эйлера:   ea+ib = ea(cos b + i sin b).

Прислать комментарий     Решение

Задача 61116  (#07.052)

Тема:   [ Комплексная экспонента ]
Сложность: 3
Классы: 10,11

Докажите, что для любых комплексных чисел z, w справедливо равенство  ezew = ez+w.

Прислать комментарий     Решение

Задача 61117  (#07.053)

Тема:   [ Комплексная экспонента ]
Сложность: 3
Классы: 10,11

Выразите функции sin x и cos x через комплексную экспоненту.

Прислать комментарий     Решение

Задача 61118  (#07.054)

Темы:   [ Комплексная экспонента ]
[ Тригонометрическая форма. Формула Муавра ]
Сложность: 3+
Классы: 10,11

Перепишите формулы Муавра (см. задачу 61088), используя вместо тригонометрических функций комплексную экспоненту.

Прислать комментарий     Решение

Задача 61119  (#07.055)

Тема:   [ Комплексная экспонента ]
Сложность: 4
Классы: 10,11

Как определить функцию  ln z  для комплексного аргумента z?

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 97]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .