ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Парламент некоторой страны принял новый закон о праздничных днях. Согласно этому закону первые K дней года, а также 23 февраля и 8 марта объявляются праздничными, а все остальные праздники отменяются. При этом все выходные (субботы и воскресенья), попавшие на праздничные дни, переносятся на следующие за этими праздниками рабочие дни.

В зависимости от того, на какой день недели приходится 1 января, количество нерабочих дней, которые идут подряд, может меняться.

Требуется определить, какое наибольшее количество нерабочих дней может идти подряд.

Формат входных данных

Во входном файле a.in записано единственное число K (1 £ K £ 50).

Формат выходных данных

В выходной файл a.out требуется записать единственное число - наибольшее количество нерабочих дней, идущих подряд.

Примеры

a.in

a.out

2

4

10

16

Вниз   Решение


а) Докажите равенство:   cos φ + ... + cos nφ = ;
б) Вычислите сумму:   sinφ + ... + sin nφ.

Вверх   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 97]      



Задача 61120  (#07.056)

Тема:   [ Комплексная экспонента ]
Сложность: 4
Классы: 10,11

Как на комплексной плоскости определить показательную функцию az?

Прислать комментарий     Решение

Задача 61121  (#07.057)

Тема:   [ Комплексная экспонента ]
Сложность: 4
Классы: 10,11

Придайте смысл равенству   = (–1)1/i ≈ 231/7.

Прислать комментарий     Решение

Задача 61122  (#07.058)

Темы:   [ Тригонометрическая форма. Формула Муавра ]
[ Геометрическая прогрессия ]
Сложность: 4-
Классы: 10,11

Пусть  z = ei/n = cos /n + i sin /n.  Для произвольного целого a вычислите суммы
  а)  1 + za + z2a + ... + z(n–1)a;
  б)  1 + 2za + 3z2a + ... + nz(n–1)a.

Прислать комментарий     Решение

Задача 61123  (#07.059)

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Комплексные числа помогают решить задачу ]
Сложность: 4
Классы: 9,10,11

а) Докажите равенство:   cos φ + ... + cos nφ = ;
б) Вычислите сумму:   sinφ + ... + sin nφ.

Прислать комментарий     Решение

Задача 61124  (#07.060)

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Комплексные числа помогают решить задачу ]
Сложность: 4-
Классы: 10,11

Докажите равенство:   = tg nα.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 97]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .