Страница: 1
2 >> [Всего задач: 7]
Задача
64526
(#1)
|
|
Сложность: 4- Классы: 9,10,11
|
Прямоугольник разбили на несколько меньших прямоугольников. Могло ли оказаться, что для каждой пары полученных прямоугольников отрезок, соединяющий их центры, пересекает еще какой-нибудь прямоугольник?
|
|
Сложность: 4- Классы: 9,10
|
Дана такая возрастающая бесконечная последовательность натуральных чисел
a1, ...,
an, ..., что каждый её член является либо средним арифметическим, либо средним геометрическим двух соседних. Обязательно ли с некоторого момента эта последовательность становится либо арифметической, либо геометрической прогрессией?
Задача
64528
(#3)
|
|
Сложность: 4 Классы: 9,10,11
|
На каждой клетке доски 10×10 стоит фишка. Разрешается выбрать диагональ, на которой стоит чётное число фишек, и снять с неё любую фишку.
Какое наибольшее число фишек можно убрать с доски такими операциями?
Задача
64529
(#4)
|
|
Сложность: 4 Классы: 9,10,11
|
Три плоскости разрезают параллелепипед на 8 шестигранников, все грани которых – четырёхугольники (каждая плоскость пересекает свои две пары противоположных граней параллелепипеда и не пересекает две оставшиеся грани). Известно, что вокруг одного из этих шестигранников можно описать сферу. Докажите, что и вокруг каждого из них можно описать сферу.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Докажите, что при любых натуральных 0 <
k <
m < n числа
и
не взаимно просты.
Страница: 1
2 >> [Всего задач: 7]