ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В турнире по игре в "крестики – нолики", проведённом по системе "проиграл – выбыл", участвовали 18 школьников. Каждый день играли одну партию, участников которой выбирали жребием из ещё не выбывших школьников. Каждый из шестерых школьников утверждает, что сыграл ровно четыре партии. Не ошибается ли кто-то из них?

   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 15]      



Задача 64670  (#2.3)

Темы:   [ Турниры и турнирные таблицы ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 10,11

В турнире по игре в "крестики – нолики", проведённом по системе "проиграл – выбыл", участвовали 18 школьников. Каждый день играли одну партию, участников которой выбирали жребием из ещё не выбывших школьников. Каждый из шестерых школьников утверждает, что сыграл ровно четыре партии. Не ошибается ли кто-то из них?

Прислать комментарий     Решение

Задача 64671  (#3.1)

Темы:   [ Алгебраические уравнения и системы уравнений (прочее) ]
[ Формулы сокращенного умножения (прочее) ]
[ Показательные уравнения ]
Сложность: 3+
Классы: 10,11

Число a – корень уравнения  х11 + х7 + х3 = 1.  При каких натуральных значениях n выполняется равенство  a4 + a3 = an + 1?

Прислать комментарий     Решение

Задача 64672  (#3.2)

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Поворот помогает решить задачу ]
Сложность: 3+
Классы: 10,11

В каком отношении делит площадь прямоугольной трапеции, описанной около окружности, биссектриса её острого угла?

Прислать комментарий     Решение

Задача 64673  (#3.3)

Темы:   [ Произведения и факториалы ]
[ Десятичная система счисления ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3+
Классы: 10,11

Произведение четырёх последовательных положительных нечётных чисел оканчивается на 9. Найдите две предпоследние цифры этого произведения.

Прислать комментарий     Решение

Задача 64674  (#4.1)

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Разложение на множители ]
Сложность: 3+
Классы: 10,11

Решите систему уравнений: .

Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .