Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 819]
|
|
Сложность: 3+ Классы: 8,9,10
|
Окружность, вписанная в прямоугольный треугольник ABC, касается катетов
AC и BC в точках B1 и A1, а гипотенузы – в точке C1. Прямые C1A1 и C1B1 пересекают CA и CB соответственно в точках B0 и A0. Докажите, что AB0 = BA0.
|
|
Сложность: 3+ Классы: 8,9,10
|
Пусть AHa и BHb – высоты, а ALa и BLb – биссектрисы треугольника ABC. Известно, что HaHb || LaLb. Верно ли, что AC = BC?
|
|
Сложность: 3+ Классы: 8,9,10
|
Дан треугольник с углами 30°, 70° и 80°. Разрежьте его отрезком на два треугольника так, чтобы биссектриса одного из этих треугольников и медиана второго, проведённые из концов разрезающего отрезка, были параллельны друг другу.
|
|
Сложность: 3+ Классы: 8,9,10
|
Две окружности Ω1 и Ω2 с центрами O1 и O2 касаются внешним образом в точке O. Точки X и Y лежат на Ω1 и Ω2 соответственно так, что лучи O1X и O2Y одинаково направлены. Из точки X проведены касательные к Ω2, а из точки Y – к Ω1. Докажите, что эти четыре прямые касаются одной окружности, проходящей через точку O.
|
|
Сложность: 3+ Классы: 8,9,10
|
Две точки окружности соединили ломаной, длина которой меньше диаметра окружности.
Докажите, что существует диаметр, не пересекающий эту ломаную.
Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 819]