ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Окружность, вписанная в прямоугольный треугольник ABC, касается катетов AC и BC в точках B1 и A1, а гипотенузы – в точке C1. Прямые C1A1 и C1B1 пересекают CA и CB соответственно в точках B0 и A0. Докажите, что  AB0 = BA0.

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 819]      



Задача 64780

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 3+
Классы: 8,9,10

Окружность, вписанная в прямоугольный треугольник ABC, касается катетов AC и BC в точках B1 и A1, а гипотенузы – в точке C1. Прямые C1A1 и C1B1 пересекают CA и CB соответственно в точках B0 и A0. Докажите, что  AB0 = BA0.

Прислать комментарий     Решение

Задача 64797

Темы:   [ Треугольник, образованный основаниями двух высот и вершиной ]
[ Подобные треугольники (прочее) ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9,10

Пусть AHa и BHb – высоты, а ALa и BLb – биссектрисы треугольника ABC. Известно, что  HaHb || LaLb.  Верно ли, что  AC = BC?
Прислать комментарий     Решение


Задача 64800

Темы:   [ Разрезания (прочее) ]
[ Медиана, проведенная к гипотенузе ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9,10

Дан треугольник с углами 30°, 70° и 80°. Разрежьте его отрезком на два треугольника так, чтобы биссектриса одного из этих треугольников и медиана второго, проведённые из концов разрезающего отрезка, были параллельны друг другу.

Прислать комментарий     Решение

Задача 64801

Темы:   [ Касающиеся окружности ]
[ Вспомогательные подобные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9,10

Две окружности Ω1 и Ω2 с центрами O1 и O2 касаются внешним образом в точке O. Точки X и Y лежат на Ω1 и Ω2 соответственно так, что лучи O1X и O2Y одинаково направлены. Из точки X проведены касательные к Ω2, а из точки Y – к Ω1. Докажите, что эти четыре прямые касаются одной окружности, проходящей через точку O.

Прислать комментарий     Решение

Задача 64802

Темы:   [ Ломаные ]
[ Неравенство треугольника (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10

Автор: Фольклор

Две точки окружности соединили ломаной, длина которой меньше диаметра окружности.
Докажите, что существует диаметр, не пересекающий эту ломаную.

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 819]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .