ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В компании из шести человек любые пять могут сесть за круглый стол так, что каждые два соседа окажутся знакомыми.
Докажите, что и всю компанию можно усадить за круглый стол так, что каждые два соседа окажутся знакомыми.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 65071

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Даны натуральные числа a и b, причём  a < 1000.  Докажите, что если a21 делится на b10, то a² делится на b.

Прислать комментарий     Решение

Задача 65072

Тема:   [ Четность и нечетность ]
Сложность: 3+
Классы: 8,9

Незнайка выписал по кругу 11 натуральных чисел. Для каждых двух соседних чисел он посчитал их разность (из большего вычел меньшее). В результате среди найденных разностей оказалось четыре единицы, четыре двойки и три тройки. Докажите, что Незнайка где-то допустил ошибку.

Прислать комментарий     Решение

Задача 65073

Темы:   [ Теория графов (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9

В компании из шести человек любые пять могут сесть за круглый стол так, что каждые два соседа окажутся знакомыми.
Докажите, что и всю компанию можно усадить за круглый стол так, что каждые два соседа окажутся знакомыми.

Прислать комментарий     Решение

Задача 65076

Темы:   [ Средние величины ]
[ Простые числа и их свойства ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9

Занумеруем все простые числа в порядке возрастания:  p1 = 2,  p2 = 3,  ... .
Может ли среднее арифметическое     при каком-нибудь  n ≥ 2  быть простым числом?

Прислать комментарий     Решение

Задача 65086

Темы:   [ Трапеции (прочее) ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3+
Классы: 8,9

В выпуклом четырёхугольнике ABCD  AD = АВ + CD.  Оказалось, что биссектриса угла А проходит через середину стороны ВС.
Докажите, что биссектриса угла D также проходит через середину ВС.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .