ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Известно, что остаток от деления некоторого простого числа на 60 равен составному числу. Какому?

   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 12]      



Задача 65217  (#7.2.3)

Темы:   [ Деление с остатком ]
[ Простые числа и их свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 7,8

Известно, что остаток от деления некоторого простого числа на 60 равен составному числу. Какому?

Прислать комментарий     Решение

Задача 65218  (#7.3.1)

Темы:   [ Линейные неравенства и системы неравенств ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3+
Классы: 7,8

Девять чисел таковы, что сумма каждых четырёх из них меньше суммы пяти остальных. Докажите, что все числа положительны.

Прислать комментарий     Решение

Задача 65219  (#7.3.2)

Темы:   [ Периметр треугольника ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 2+
Классы: 7,8

На сторонах угла ABC отмечены точки М и K так, что углы BMC и BKA равны,  BM = BK,  AB = 15,  BK = 8,  CM = 9.
Найдите периметр треугольника СOK, где O – точка пересечения прямых AK и СМ.

Прислать комментарий     Решение

Задача 65220  (#7.3.3)

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 3

В некоторой школе в каждом из 20 классов выбрали совет из 5 учеников. Петя оказался единственным мальчиком, избранным в совет класса вместе с четырьмя девочками. Он заметил, что еще в 15 классах девочек выбрали больше, чем мальчиков, хотя в целом по школе мальчиков и девочек выбрано поровну. Сколько мальчиков и сколько девочек в советах четырёх оставшихся классов (в сумме)?

Прислать комментарий     Решение

Задача 65221  (#7.4.1)

Тема:   [ Графики и ГМТ на координатной плоскости ]
Сложность: 3+
Классы: 7,8

На листе бумаги были построены система координат (выделена жирно) и графики трёх функций:  y = ax + b,  y = bx + c  и  y = cx + a.  После этого стёрли обозначения и направления осей, а сам лист как-то повернули (см. рисунок). Укажите на рисунке ось абсцисс и ее направление.

Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .