Страница: 1
2 >> [Всего задач: 8]
Задача
65369
(#9.1)
|
|
Сложность: 3+ Классы: 9,10,11
|
Пусть C – одна из точек пересечения окружностей α и β. Касательная в этой точке к α пересекает β в точке B, а касательная в C к β пересекает α в точке A, причём A и B отличны от C, и угол ACB тупой. Прямая AB вторично пересекает α и β в точках N и M соответственно. Докажите, что 2MN < AB.
Задача
65368
(#9.2)
|
|
Сложность: 4- Классы: 9,10,11
|
Дан выпуклый четырёхугольник. Постройте циркулем и линейкой точку, проекции которой на прямые, содержащие его стороны, являются вершинами параллелограмма.
Задача
65370
(#9.3)
|
|
Сложность: 4 Классы: 9,10,11
|
На плоскости нарисованы 100 кругов, каждые два из которых имеют общую точку (возможно, граничную).
Докажите, что найдётся точка, принадлежащая не менее чем 15 кругам.
Задача
65371
(#9.4)
|
|
Сложность: 4+ Классы: 9,10,11
|
Дан фиксированный треугольник ABC. По его описанной окружности движется точка P так, что хорды BC и AP пересекаются. Прямая AP разрезает треугольник BPC на два меньших, центры вписанных окружностей которых обозначим через I1 и I2 соответственно. Прямая I1I2 пересекает прямую BC в точке Z. Докажите, что все прямые ZP проходят через фиксированную точку.
Задача
65372
(#9.5)
|
|
Сложность: 3+ Классы: 9,10,11
|
В неравнобедренном прямоугольном треугольнике ABC точка M – середина гипотенузы AC, точки Ha, Hc – ортоцентры треугольников ABM, CBM соответственно. Докажите, что прямые AHc, CHa пересекаются на средней линии треугольника ABC.
Страница: 1
2 >> [Всего задач: 8]