Страница: 1
2 >> [Всего задач: 6]
Задача
65504
(#8.1)
|
|
Сложность: 3+ Классы: 7,8,9
|
Натуральное число n называется хорошим, если после приписывания его справа к любому натуральному числу получается число, делящееся на n. Запишите десять хороших чисел, которые меньше чем 1000.
Задача
65505
(#8.2)
|
|
Сложность: 3+ Классы: 7,8,9
|
Сорока-ворона кашу варила, деток кормила. Третьему птенцу досталось столько же каши, сколько первым двум вместе взятым. Четвёртому – столько же, сколько второму и третьему. Пятому – столько же, сколько третьему и четвёртому. Шестому – столько же, сколько четвёртому и пятому. А седьмому не досталось – каша кончилась! Известно, что пятый птенец получил 10 г каши. Сколько каши сварила сорока-ворона?
Задача
65506
(#8.3)
|
|
Сложность: 3+ Классы: 8,9
|
ABCD – выпуклый четырёхугольник. Известно, что ∠CAD = ∠DBA = 40°, ∠CAB = 60°, ∠CBD = 20°. Найдите угол CDB.
Задача
65507
(#8.4)
|
|
Сложность: 3+ Классы: 7,8,9
|
Двенадцать стульев стоят в ряд. Иногда на один из свободных стульев садится человек. При этом ровно один из его соседей (если они были) встаёт и уходит.
Какое наибольшее количество человек могут одновременно оказаться сидящими, если вначале все стулья были пустыми?
Задача
65509
(#8.5)
|
|
Сложность: 3+ Классы: 8,9
|
Внутри равностороннего треугольника ABC отмечена произвольная точка M. Докажите, что можно выбрать на стороне AB точку C1, на стороне BC – точку A1, а на стороне AC – точку B1 таким образом, чтобы длины сторон треугольника A1B1C1 были равны отрезкам MA, MB и MC.
Страница: 1
2 >> [Всего задач: 6]