ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольник ABC вписана окружность с центром O. На стороне AB выбрана точка P, а на продолжении стороны AC за точку C – точка Q так, что отрезок PQ касается окружности. Докажите, что  ∠BOP = ∠COQ.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



Задача 65507

Темы:   [ Процессы и операции ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 3+
Классы: 7,8,9

Двенадцать стульев стоят в ряд. Иногда на один из свободных стульев садится человек. При этом ровно один из его соседей (если они были) встаёт и уходит. Какое наибольшее количество человек могут одновременно оказаться сидящими, если вначале все стулья были пустыми?

Прислать комментарий     Решение

Задача 65509

Темы:   [ Правильный (равносторонний) треугольник ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3+
Классы: 8,9

Внутри равностороннего треугольника ABC отмечена произвольная точка M. Докажите, что можно выбрать на стороне AB точку C1, на стороне BC – точку A1, а на стороне AC – точку B1 таким образом, чтобы длины сторон треугольника A1B1C1 были равны отрезкам MA, MB и MC.

Прислать комментарий     Решение

Задача 65511

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10

Могут ли произведения всех ненулевых цифр двух последовательных натуральных чисел отличаться ровно в 54 раза?

Прислать комментарий     Решение

Задача 65512

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Вписанные и описанные окружности ]
[ Биссектриса угла (ГМТ) ]
[ Углы между биссектрисами ]
Сложность: 3+
Классы: 9,10

В треугольник ABC вписана окружность с центром O. На стороне AB выбрана точка P, а на продолжении стороны AC за точку C – точка Q так, что отрезок PQ касается окружности. Докажите, что  ∠BOP = ∠COQ.

Прислать комментарий     Решение

Задача 65514

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки равенства прямоугольных треугольников ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 9,10

Квадрат ABCD и равнобедренный прямоугольный треугольник AEF  (∠AEF = 90°)  расположены так, что точка E лежит на отрезке BC (см. рисунок). Найдите угол DCF.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .