Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 69]
|
|
Сложность: 3 Классы: 7,8,9
|
Решите уравнение 1 + 1 : (1 + 1 : (1 + 1 : (x + 2016))) = (1,2)².
|
|
Сложность: 3 Классы: 7,8,9
|
На стороне ВС треугольника АВС отмечена точка E, а на биссектрисе BD – точка F таким образом, что EF || AC и AF = AD. Докажите, что AВ = ВЕ.
|
|
Сложность: 3 Классы: 7,8,9
|
Про треугольник, один из углов которого равен 120°, известно, что его можно разрезать на два равнобедренных треугольника.
Чему могут быть равны два других угла исходного треугольника?
|
|
Сложность: 3 Классы: 7,8,9
|
На острове живут лжецы, которые всегда лгут, и рыцари, которые всегда говорят правду. Каждый из них сделал по два заявления: 1) "Среди моих друзей – нечётное количество рыцарей"; 2) "Среди моих друзей – чётное количество лжецов". Чётно или нечётно количество жителей острова?
|
|
Сложность: 3+ Классы: 9,10,11
|
На сторонах АВ, ВС и СА равностороннего треугольника АВС выбраны точки D, E и F соответственно так, что DE || АC, DF || BС.
Найдите угол между прямыми AЕ и BF.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 69]