ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На каждом из 12 рёбер куба отметили его середину. Обязательно ли сфера проходит через все отмеченные точки, если известно, что она проходит а) через какие-то 6 из отмеченных точек; б) через какие-то 7 из отмеченных точек? Решение |
Страница: 1 [Всего задач: 5]
Точку внутри выпуклого четырёхугольника соединили со всеми вершинами и с четырьмя точками на сторонах (по одной на стороне). Четырёхугольник оказался разделён на восемь треугольников с одинаковыми радиусами описанных окружностей. Докажите, что исходный четырёхугольник вписанный.
Существуют ли 2016 целых чисел, сумма и произведение которых равны 2016?
В квадрате 10×10 все клетки левого верхнего квадрата 5×5 закрашены чёрным цветом, а остальные клетки – белым. На какое наибольшее количество многоугольников можно разрезать (по границам клеток) этот квадрат так, чтобы в каждом многоугольнике чёрных клеток было в три раза меньше, чем белых? (Многоугольники не обязаны быть равными или даже равновеликими.)
Фирма записала свои расходы в рублях по 100 статьям бюджета, получив список из 100 чисел (у каждого числа не более двух знаков после запятой). Каждый счетовод взял копию списка и нашёл приближённую сумму расходов, действуя следующим образом. Вначале он произвольно выбрал из списка два числа, сложил их, отбросил у суммы знаки после запятой (если они были) и записал результат вместо выбранных двух чисел. С полученным списком из 99 чисел он проделал то же самое, и так далее, пока в списке не осталось одно целое число. Оказалось, что в итоге все счетоводы получили разные результаты. Какое наибольшее число счетоводов могло работать в фирме?
а) через какие-то 6 из отмеченных точек; б) через какие-то 7 из отмеченных точек?
Страница: 1 [Всего задач: 5] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|