ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На берёзе сидели белые и чёрные вороны – всего их было 50. Белые точно были, а чёрных было не меньше, чем белых. На дубе тоже сидели белые и чёрные вороны, и было их всего 50. На дубе чёрных тоже было не меньше, чем белых или столько же, а может быть, даже на одну меньше. Одна случайная ворона перелетела с берёзы на дуб, а через некоторое время другая (может быть, та же самая) случайная ворона перелетела с дуба на берёзу. Что более вероятно: что количество белых ворон на берёзе стало таким же, как было сначала, или что оно изменилось?

   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 66043

Темы:   [ Задачи на смеси и концентрации ]
[ Инварианты ]
Сложность: 2+
Классы: 6,7,8,9

В красном ящике 100 красных шаров, а в зелёном ящике – 100 зелёных шаров. Восемь красных шаров переложили в зелёный ящик, а потом столько же шаров переложили из зелёного ящика в красный. Шары в ящиках хорошенько перемешали. Что теперь больше: вероятность вытащить наудачу из красного ящика зелёный шар или из зелёного ящика красный?

Прислать комментарий     Решение

Задача 66042

Тема:   [ Средние величины ]
Сложность: 3
Классы: 6,7,8

В Солнечной долине 10 посёлков. Однажды статистики долины провели исследование численности жителей в посёлках. Обнаружили следующее.
  1. Число жителей в любых двух посёлках долины отличается не более чем на 100 человек.
  2. В посёлке Знойное ровно 1000 жителей, что превышает среднюю численность населения посёлков долины на 90 человек.
Сколько жителей в посёлке Радужный, который также расположен в Солнечной долине?

Прислать комментарий     Решение

Задача 66051

Темы:   [ Дискретное распределение ]
[ Средние величины ]
[ Площадь круга, сектора и сегмента ]
Сложность: 3
Классы: 8,9,10

  По будням Рассеянный Учёный едет на работу по кольцевой линии московского метро от станции "Таганская" до станции "Киевская", а вечером – обратно (см. схему).

  Войдя на станцию, Учёный садится в первый же подошедший поезд. Известно, что в обоих направлениях поезда ходят с примерно равными интервалами, причём по северному маршруту (через "Белорусскую") поезд идёт от "Киевской" до "Таганской" или обратно 17 минут, а по южному маршруту (через "Павелецкую") – 11 минут.   По давней привычке Учёный всё всегда подсчитывает. Однажды он подсчитал, что по многолетним наблюдениям:
  - поезд, идущий против часовой стрелки, приходит на "Киевскую" в среднем через 1 минуту 15 секунд после того, как на неё приходит поезд, идущий по часовой стрелке. То же верно и для "Таганской".
  - на поездку из дома на работу Учёный в среднем тратит на 1 минуту меньше, чем на поездку с работы домой.
  Найдите математическое ожидание интервала между поездами, идущими в одном направлении.

Прислать комментарий     Решение

Задача 66045

Темы:   [ Парадоксы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7,8,9,10

  В школьном совете выбирают председателя. Кандидатов четверо: А, Б, В и Г. Предложена специальная процедура – каждый член совета должен записать на специальном листке кандидатов в порядке своих предпочтений. Например, АВГБ значит, что член совета на первое место ставит А, не очень возражает против В и считает, что он лучше, чем Г, зато меньше всего хотел бы видеть председателем Б. Первое место даёт кандидату 3 очка, второе – 2 очка, третье – 1 очко, а четвёртое – 0 очков. После сбора всех листков избирательная комиссия суммирует очки у каждого кандидата. Победит тот, у кого наибольшая сумма очков.
  После голосования выяснилось, что В (который набрал меньше всех очков) снимает свою кандидатуру в связи с переходом в другую школу. Заново голосовать не стали, а просто вычеркнули В из всех листков. В каждом листке осталось три кандидата. Поэтому первое место стало стоить 2 очка, второе – 1 очко, а третье – 0 очков. Очки просуммировали заново.
  Могло ли случиться так, что кандидат, который прежде имел больше всех очков, после самоотвода В получил меньше всех?

Прислать комментарий     Решение

Задача 66047

Тема:   [ Дискретное распределение ]
Сложность: 3+
Классы: 7,8,9

На берёзе сидели белые и чёрные вороны – всего их было 50. Белые точно были, а чёрных было не меньше, чем белых. На дубе тоже сидели белые и чёрные вороны, и было их всего 50. На дубе чёрных тоже было не меньше, чем белых или столько же, а может быть, даже на одну меньше. Одна случайная ворона перелетела с берёзы на дуб, а через некоторое время другая (может быть, та же самая) случайная ворона перелетела с дуба на берёзу. Что более вероятно: что количество белых ворон на берёзе стало таким же, как было сначала, или что оно изменилось?

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .