ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Неравнобедренный треугольник ABC, в котором ∠C = 60°, вписан в окружность Ω. На биссектрисе угла A выбрана точка A', а на биссектрисе угла B – точка B' так, что AB' || BC и B'A || AC. Прямая A'B' пересекает Ω в точках D и E. Докажите, что треугольник CDE равнобедренный. Решение |
Страница: << 1 2 [Всего задач: 8]
Верно ли, что для любых трёх различных натуральных чисел a, b и c найдётся квадратный трёхчлен с целыми коэффициентами и положительным старшим коэффициентом, принимающий в некоторых целых точках значения a³, b³ и c³?
Неравнобедренный треугольник ABC, в котором ∠C = 60°, вписан в окружность Ω. На биссектрисе угла A выбрана точка A', а на биссектрисе угла B – точка B' так, что AB' || BC и B'A || AC. Прямая A'B' пересекает Ω в точках D и E. Докажите, что треугольник CDE равнобедренный.
Каждая клетка доски 100×100 окрашена либо в чёрный, либо в белый цвет, причём все клетки, примыкающие к границе доски – чёрные. Оказалось, что нигде на доске нет одноцветного клетчатого квадрата 2×2. Докажите, что на доске найдётся клетчатый квадрат 2×2, клетки которого окрашены в шахматном порядке.
Страница: << 1 2 [Всего задач: 8] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|