ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Цена стандартного обеда в таверне "Буратино" зависит только от дня недели. Аня обедала 10 дней подряд, начиная с 10 июля, и заплатила 70 сольдо. Ваня также заплатил 70 сольдо за 12 обедов, начиная с 12 июля. Таня заплатила 100 сольдо за 20 обедов, начиная с 20 июля. Сколько заплатит Саня за 24 обеда, начиная с 24 июля?

   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 16]      



Задача 66392

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Текстовые задачи (прочее) ]
Сложность: 3+
Классы: 6,7,8

Цена стандартного обеда в таверне "Буратино" зависит только от дня недели. Аня обедала 10 дней подряд, начиная с 10 июля, и заплатила 70 сольдо. Ваня также заплатил 70 сольдо за 12 обедов, начиная с 12 июля. Таня заплатила 100 сольдо за 20 обедов, начиная с 20 июля. Сколько заплатит Саня за 24 обеда, начиная с 24 июля?
Прислать комментарий     Решение


Задача 66393

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 5,6,7

Автор: Фольклор

Есть доска размером 7 × 12 клеток и кубик, грань которого равна клетке. Одна грань кубика окрашена невысыхающей краской. Кубик можно поставить в некоторую клетку доски и перекатывать через ребро на соседнюю грань. Ставить кубик дважды на одну и ту же клетку нельзя. Какое наибольшее количество клеток сможет посетить кубик, не испачкав доску краской?
Прислать комментарий     Решение


Задача 66398

Темы:   [ Разные задачи на разрезания ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8

Автор: Фольклор

Можно ли разрезать равносторонний треугольник на три равных девятиугольника?
Прислать комментарий     Решение


Задача 66399

Тема:   [ Математическая логика (прочее) ]
Сложность: 3+
Классы: 7,8

Автор: Пешнин А.

На острове рыцарей и лжецов каждый дружит с десятью другими жителями (рыцари всегда говорят правду, лжецы всегда лгут). Каждый житель острова заявил, что среди его друзей больше лжецов, чем рыцарей. Может ли количество рыцарей быть вдвое больше, чем количество лжецов?
Прислать комментарий     Решение


Задача 66400

Темы:   [ Равные треугольники. Признаки равенства (прочее) ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 3+
Классы: 7,8

Автор: Фольклор

Точка M – середина стороны BC треугольника ABC. Из вершины C опущен перпендикуляр CL на прямую AM (L лежит между A и М). На отрезке AM отмечена точка K так, что AK = 2LM. Докажите, что ∠BKM = ∠CAM.
Прислать комментарий     Решение


Страница: << 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .