Страница:
<< 1 2 3
4 5 6 >> [Всего задач: 29]
Задача
66552
(#3)
|
|
Сложность: 3 Классы: 8
|
Дано натуральное число $N$.
Вера делает с ним следующие операции:
сначала прибавляет 3 до тех пор, пока получившееся число не станет
делиться на 5
(если изначально $N$ делится на 5, то ничего прибавлять
не надо).
Получившееся число Вера делит на 5.
Далее делает эти же
операции с новым числом, и так далее. Из каких чисел такими операциями
нельзя получить 1?
Задача
66558
(#3)
|
|
Сложность: 3 Классы: 8,9,10
|
Три богатыря сражаются со Змеем Горынычем.
Илья Муромец каждым своим
ударом отрубает половину всех голов и еще одну, Добрыня Никитич —
треть всех голов и еще две, а Алёша Попович — четверть всех голов и
еще три. Богатыри бьют по одному, в том порядке, в котором считают
нужным. Если ни один богатырь не может ударить из-за того, что число
голов получится нецелым, то Змей съедает богатырей. Смогут ли богатыри
отрубить все головы $20^{20}$-головому Змею?
Задача
66564
(#3)
|
|
Сложность: 3 Классы: 9,10,11
|
Существует ли вписанный в окружность $19$-угольник, у которого нет одинаковых по длине сторон, а все углы выражаются целым числом градусов?
Задача
66559
(#3)
|
|
Сложность: 4 Классы: 8,9,10
|
В остроугольном треугольнике $ABC$ ($AB$<$BC$) провели
высоту $BH$. Точка $P$ симметрична точке $H$ относительно прямой,
соединяющей середины сторон $AC$ и $BC$. Докажите, что прямая $BP$
содержит центр описанной окружности треугольника $ABC$.
Задача
66576
(#3)
|
|
Сложность: 3 Классы: 9,10,11
|
За круглым вращающимся столом, на котором стоят 8 белых и
7 чёрных чашек, сидят 15 гномов. Они надели 8 белых и 7 чёрных
колпачков. Каждый гном берёт себе чашку, цвет которой совпадает с
цветом его колпачка, и ставит напротив себя, после этого стол
поворачивается случайным образом. Какое наибольшее число совпадений
цвета чашки и колпачка можно гарантировать после поворота стола (гномы
сами выбирают, как сесть, но не знают, как повернётся стол)?
Страница:
<< 1 2 3
4 5 6 >> [Всего задач: 29]