ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Директор зоопарка приобрёл восемь слонов с номерами 1, 2, ..., 8. Какие у них были массы, он забыл, но запомнил, что масса каждого слона, начиная с третьего, равнялась сумме масс двух предыдущих. Вдруг до директора дошёл слух, что один слон похудел. Как ему за два взвешивания на чашечных весах без гирь найти этого слона или убедиться, что это всего лишь слух? (Ему известно, что ни один слон не потолстел, а похудеть мог максимум один.)

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 66865  (#1)

Темы:   [ Окружности (прочее) ]
[ Теория чисел. Делимость (прочее) ]
Сложность: 3
Классы: 8,9,10,11

На окружности отмечено 100 точек. Может ли при этом оказаться ровно 1000 прямоугольных треугольников, все вершины которых — отмеченные точки?
Прислать комментарий     Решение


Задача 66866  (#2)

Тема:   [ Таблицы и турниры (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Группа из восьми теннисистов раз в год разыгрывала кубок по олимпийской системе (игроки по жребию делятся на 4 пары; выигравшие делятся по жребию на две пары, играющие в полуфинале; их победители играют финальную партию). Через несколько лет оказалось, что каждый с каждым сыграл ровно один раз. Докажите, что
а) каждый побывал в полуфинале более одного раза;
б) каждый побывал в финале.
Прислать комментарий     Решение


Задача 66868  (#3)

Тема:   [ Теория игр (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Автор: Ивлев Б.М.

В куче $n$ камней, играют двое. За ход можно взять из кучи количество камней, либо равное простому делителю текущего числа камней в куче, либо равное 1. Выигрывает взявший последний камень. При каких $n$ начинающий может играть так, чтобы всегда выигрывать, как бы ни играл его соперник?
Прислать комментарий     Решение


Задача 66867  (#4)

Темы:   [ Правильный (равносторонний) треугольник ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 4
Классы: 8,9,10,11

Автор: Эвнин А.Ю.

Дан равносторонний треугольник со стороной $d$ и точка $P$, расстояния от которой до вершин треугольника равны положительным числам $a$, $b$ и $с$. Докажите, что найдётся равносторонний треугольник со стороной $a$ и точка $Q$, расстояния от которой до вершин этого треугольника равны $b$, $с$ и $d$.
Прислать комментарий     Решение


Задача 66869  (#5)

Тема:   [ Взвешивания ]
Сложность: 4
Классы: 8,9,10,11

Директор зоопарка приобрёл восемь слонов с номерами 1, 2, ..., 8. Какие у них были массы, он забыл, но запомнил, что масса каждого слона, начиная с третьего, равнялась сумме масс двух предыдущих. Вдруг до директора дошёл слух, что один слон похудел. Как ему за два взвешивания на чашечных весах без гирь найти этого слона или убедиться, что это всего лишь слух? (Ему известно, что ни один слон не потолстел, а похудеть мог максимум один.)
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .