ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Олимпиады и турниры
>>
Олимпиада по геометрии имени И.Ф. Шарыгина
>>
XVII Олимпиада по геометрии имени И.Ф. Шарыгина (2021 г.)
классы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Продолжения боковых сторон $AB$ и $CD$ трапеции $ABCD$ пересекаются в точке $S$. Точки $X$, $Y$ на биссектрисе угла $S$ таковы, что $\angle AXC-\angle AYC=\angle ASC$. Докажите, что $\angle BXD-\angle BYD=\angle BSD$. Решение |
Страница: << 4 5 6 7 8 9 10 [Всего задач: 48]
Страница: << 4 5 6 7 8 9 10 [Всего задач: 48] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|