ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Из тридцати пунктов A1, A2, ..., A30, расположенных на прямой MN на равных расстояниях друг от друга, выходят тридцать прямых дорог. Эти дороги располагаются по одну сторону от прямой MN и образуют с MN следующие углы:

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
$\displaystyle \alpha$ 60o 30o 15o 20o 155o 45o 10o 35o 140o 50o 125o 65o 85o 86o 80o
  16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
$\displaystyle \alpha$ 75o 78o 115o 95o 25o 28o 158o 30o 25o 5o 15o 160o 170o 20o 158o
                               

Из всех тридцати пунктов выезжают одновременно тридцать автомобилей, едущих, никуда не сворачивая, по этим дорогам с одинаковой скоростью. На каждом из перекрёстков установлено по шлагбауму. Как только первая по времени машина проезжает перекрёсток, шлагбаум закрывается и преграждает путь всем следующим машинам, попадающим на этот перекрёсток. Какие из машин проедут все перекрёстки на своём пути, а какие застрянут?

Вниз   Решение


Пусть $L$ – середина меньшей дуги $AC$ описанной окружности остроугольного треугольника $ABC$. Из вершины $B$ на касательную к описанной окружности, проведённую в точке $L$, опустили перпендикуляр $BP$. Докажите, что точки $P$, $L$ и середины сторон $AB$ и $BC$ лежат на одной окружности.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 67219

Темы:   [ Центральная симметрия (прочее) ]
[ Четность и нечетность ]
[ Топология (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Замкнутая, возможно, самопересекающаяся ломаная симметрична относительно не лежащей на ней точки $O$. Докажите, что число оборотов ломаной вокруг $O$ нечётно. (Числом оборотов вокруг $O$ называется сумма ориентированных углов $$\angle A_1OA_2+\angle A_2OA_3+\ldots+\angle A_{n-1}OA_n+\angle A_nOA_1,$$ делённая на $2\pi$.)
Прислать комментарий     Решение


Задача 67218

Темы:   [ Трапеции (прочее) ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 3+
Классы: 8,9,10

В трапеции $ABCD$ основание $AD$ вдвое больше основания $BC$, а угол $C$ в полтора раза больше угла $A$. Диагональ $AC$ делит угол $C$ на два угла. Определите, какой из них больше?
Прислать комментарий     Решение


Задача 67220

Тема:   [ Теорема синусов ]
Сложность: 3+
Классы: 9,10,11

Автор: Матвеев А.

Дан выпуклый четырёхугольник $ABCD$. Точки $X$ и $Y$ лежат на продолжениях за точку $D$ сторон $CD$ и $AD$ соответственно, причем $DX=AB$ и $DY=BC$. Аналогично, точки $Z$ и $T$ лежат на продолжениях за точку $B$ сторон $CB$ и $AB$, причем $BZ=AD$ и $BT=DC$. Пусть $M_1$ – середина $XY$, $M_2$ – середина $ZT$. Докажите, что прямые $DM_1$, $BM_2$ и $AC$ пересекаются в одной точке.
Прислать комментарий     Решение


Задача 67206

Темы:   [ Вписанные и описанные окружности ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3+
Классы: 8,9,10

Пусть $L$ – середина меньшей дуги $AC$ описанной окружности остроугольного треугольника $ABC$. Из вершины $B$ на касательную к описанной окружности, проведённую в точке $L$, опустили перпендикуляр $BP$. Докажите, что точки $P$, $L$ и середины сторон $AB$ и $BC$ лежат на одной окружности.
Прислать комментарий     Решение


Задача 67207

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Диагонали прямоугольника $ABCD$ пересекаются в точке $E$. Окружность с центром в точке $E$ лежит внутри прямоугольника. Из вершин $C$, $D$, $A$ проведены касательные к окружности $CF$, $DG$, $AH$, причем $CF$ пересекает $DG$ в точке $I$, $EI$ пересекает $AD$ в точке $J$, а прямые $AH$ и $CF$ пересекаются в точке $L$. Докажите, что отрезок $LJ$ перпендикулярен $AD$.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .