ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Про пять положительных чисел известно, что если из суммы любых трёх из них вычесть сумму двух оставшихся, то разность будет положительной. Докажите, что произведение всех десяти таких разностей не превосходит квадрата произведения данных пяти чисел.

   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 73631  (#М96)

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Тождественные преобразования ]
Сложность: 4+
Классы: 8,9,10

Про пять положительных чисел известно, что если из суммы любых трёх из них вычесть сумму двух оставшихся, то разность будет положительной. Докажите, что произведение всех десяти таких разностей не превосходит квадрата произведения данных пяти чисел.

Прислать комментарий     Решение

Задача 73632  (#М97)

Темы:   [ Средняя линия треугольника ]
[ Перенос стороны, диагонали и т.п. ]
[ Ограниченность, монотонность ]
[ Предел последовательности, сходимость ]
Сложность: 5-
Классы: 9,10,11

В трапеции ABCD с основаниями AB = a и CD = b проведён отрезок A1B1, соединяющий середины диагоналей. В полученной трапеции проведён отрезок A2B2, тоже соединяющий середины диагоналей, и так далее. Может ли в последовательности длин отрезков AB, A1B1, A2B2,... какое-то число встретиться дважды? Является ли эта последовательность монотонной (возрастающей или убывающей)? Стремится ли она к какому-нибудь пределу?
Прислать комментарий     Решение


Задача 73633  (#М98)

Темы:   [ Доказательство от противного ]
[ Обратный ход ]
[ Числовые таблицы и их свойства ]
[ Рекуррентные соотношения ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 7,8,9

  а) Докажите, что в таблице

где каждое число равно сумме трёх стоящих над ним чисел, в каждой строке (начиная с третьей) есть чётное число.
  б) В каждой ли строке (кроме первых двух) встречается число, кратное 3?

Прислать комментарий     Решение

Задача 73635  (#М100)

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Разбиения на пары и группы; биекции ]
[ Теорема Виета ]
[ Комплексные числа помогают решить задачу ]
[ Алгебраические уравнения в C. Извлечение корня ]
Сложность: 5
Классы: 9,10,11

Сумма тангенсов углов величиной 1°, 5°, 9°, 13°, ..., 173°, 177° равна 45. Докажите это.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .