ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что для любого натурального n справедливо соотношение:

$\displaystyle {\frac{(2n)!}{n!}}$ = 2n . (2n - 1)!!

   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 19]      



Задача 76525

Тема:   [ Арифметические действия. Числовые тождества ]
Сложность: 3+
Классы: 10,11

Доказать, что для любого натурального n справедливо соотношение:

$\displaystyle {\frac{(2n)!}{n!}}$ = 2n . (2n - 1)!!

Прислать комментарий     Решение

Задача 76529

Тема:   [ Угол (экстремальные свойства) ]
Сложность: 3+
Классы: 8,9

На сторонах угла AOB от вершины O отложены отрезки OA и OB, причем OA > OB. На отрезке OA взята точка M, на продолжении отрезка OB — точка N так, что AM = BN = x. Найти значение x, при котором отрезок MN имеет наименьшую длину.
Прислать комментарий     Решение


Задача 76535

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Классическая комбинаторика (прочее) ]
[ Проективная плоскость с конечным числом точек ]
Сложность: 4-
Классы: 10,11

В городе 57 автобусных маршрутов. Известно, что:
  1) с каждой остановки на любую другую остановку можно попасть без пересадки;
  2) для каждой пары маршрутов найдётся, и притом только одна, остановка, на которой можно пересесть с одного из этих маршрутов на другой;
  3) на каждом маршруте не менее трёх остановок.
Сколько остановок имеет каждый из 57 маршрутов?

Прислать комментарий     Решение

Задача 76523

Тема:   [ Угол (экстремальные свойства) ]
Сложность: 4
Классы: 10,11

Через точку A, лежащую внутри угла, проведена прямая, отсекающая от этого угла наименьший по площади треугольник. Доказать, что отрезок этой прямой, заключённый между сторонами угла, делится в точке A пополам.
Прислать комментарий     Решение


Задача 76528

Тема:   [ Разложение на множители ]
Сложность: 4
Классы: 8,9

Докажите, что выражение  x5 + 3x4y – 5x³y2 – 15x²y³ + 4xy4 + 12y5  не равно 33 ни при каких целых значениях x и y.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .