Страница:
<< 1 2 3 4 5
6 >> [Всего задач: 27]
Тысяча точек является вершинами выпуклого тысячеугольника, внутри которого
расположено ещё пятьсот точек так, что никакие три из пятисот не лежат на одной
прямой. Данный тысячеугольник разрезан на треугольники таким образом, что все
указанные 1500 точек являются вершинами треугольников и эти треугольники не
имеют никаких других вершин. Сколько получится треугольников при таком
разрезании?
|
|
Сложность: 4- Классы: 9,10
|
1953 цифры выписаны по кругу. Известно, что если читать эти цифры по часовой
стрелке, начиная с некоторого определённого места, то полученное 1953-значное число делится на 27. Докажите, что если начать читать по часовой стрелке с любого другого места, то полученное число также будет делиться на 27.
|
|
Сложность: 4- Классы: 9,10,11
|
Даны уравнения ax² + bx + c = 0 (1) и – ax² + bx + c (2). Доказать, что если x1 и x2 – соответственно какие-либо корни уравнений (1) и (2), то найдётся такой корень x3 уравнения ½ ax² + bx + c, что либо x1 ≤ x3 ≤ x2, либо x1 ≥ x3 ≥ x2.
Пусть x0 = 109,
xn = . Доказать, что 0 < x36 – < 10–9.
|
|
Сложность: 4- Классы: 8,9,10
|
На бесконечной шахматной доске стоит конь. Найти все клетки, куда он может
попасть за 2n ходов.
Страница:
<< 1 2 3 4 5
6 >> [Всего задач: 27]