ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Имеется бесконечная шахматная доска. Обозначим через  (a, b)  поле, расположенное на пересечении горизонтали с номером a и вертикали с номером b. Фишка с поля  (a, b)  может сделать ход на любое из восьми полей:  (a ± m, b ± n),  (a ± n, b ± m),  где m, n – фиксированные числа, а "+" и "–" комбинируются произвольно. Сделав x ходов, фишка вернулась на исходное поле. Доказать, что x чётно.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78225  (#1)

Темы:   [ Системы точек ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 3+
Классы: 9,10

Каково наибольшее n, при котором так можно расположить n точек на плоскости, чтобы каждые 3 из них служили вершинами прямоугольного треугольника?
Прислать комментарий     Решение


Задача 78226  (#2)

Темы:   [ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3+
Классы: 9,10

Имеется бесконечная шахматная доска. Обозначим через  (a, b)  поле, расположенное на пересечении горизонтали с номером a и вертикали с номером b. Фишка с поля  (a, b)  может сделать ход на любое из восьми полей:  (a ± m, b ± n),  (a ± n, b ± m),  где m, n – фиксированные числа, а "+" и "–" комбинируются произвольно. Сделав x ходов, фишка вернулась на исходное поле. Доказать, что x чётно.

Прислать комментарий     Решение

Задача 78222  (#3)

Темы:   [ Неравенство треугольника (прочее) ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

Доказать, что из сторон произвольного четырёхугольника можно сложить трапецию.
Прислать комментарий     Решение


Задача 78227  (#4)

Темы:   [ Задачи на движение ]
[ Покрытия ]
[ Примеры и контрпримеры. Конструкции ]
[ Линейные неравенства и системы неравенств ]
Сложность: 4
Классы: 8,9,10

Улитка ползёт с непостоянной скоростью. Несколько человек наблюдало за ней по очереди в течение 6 минут. Каждый начинал наблюдать раньше, чем кончал предыдущий, и наблюдал ровно 1 минуту. За эту минуту улитка проползла ровно 1 м. Доказать, что за все 6 минут улитка могла проползти самое большее 10 м.

Прислать комментарий     Решение

Задача 78228  (#5)

Тема:   [ Замощения костями домино и плитками ]
Сложность: 4
Классы: 9,10

Дан пятиугольник ABCDE. AB = BC = CD = DE, $ \angle$B = $ \angle$D = 90o. Доказать, что пятиугольниками, равными данному, можно замостить плоскость.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .