Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 37]
|
|
Сложность: 3+ Классы: 9,10
|
См.
задачу 4 для 8 класса. Кроме того, доказать, что если длины отрезков
a1,...,
a6 удовлетворяют соотношениям:
a1 -
a4 =
a5 -
a2 =
a3 -
a6, то из
этих отрезков можно построить равноугольный шестиугольник.
|
|
Сложность: 3+ Классы: 7,8,9
|
Собрались 2
n человек, каждый из которых знаком не менее чем с
n
присутствующими. Доказать, что можно выбрать из них четырёх человек и рассадить
их за круглым столом так, что при этом каждый будет сидеть рядом со
своими знакомыми (
n2).
В квадрате со стороной длины 1 выбрано 102 точки, из которых никакие три не
лежат на одной прямой. Доказать, что найдётся треугольник с вершинами в этих
точках, площадь которого меньше, чем 1/100.
При каких натуральных
a существуют такие натуральные числа
x и
y, что
(
x +
y)
2 + 3
x +
y = 2
a?
|
|
Сложность: 3+ Классы: 9,10
|
Доказать, что любое чётное число 2
n 0 может быть единственным образом
представлено в виде
2
n = (
x +
y)
2 + 3
x +
y, где
x и
y — целые неотрицательные
числа.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 37]