ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Клетки доски 7×7 окрашены в шахматном порядке так, что углы окрашены в чёрный цвет. Разрешается перекрашивать в противоположный цвет любые две соседние клетки. Можно ли с помощью таких операций перекрасить всю доску в белый цвет?

Вниз   Решение


В набор "Юный геометр" входит несколько плоских граней, из которых можно собрать выпуклый многогранник. Юный геометр Саша разделил эти грани на две кучки. Могло ли случиться, что из граней каждой кучки тоже можно собрать выпуклый многогранник?
(И в начале, и в конце каждая из граней набора должна являться гранью многогранника.)

ВверхВниз   Решение


На плоскости нарисовано несколько прямых (не меньше двух), никакие две из которых не параллельны и никакие три не проходят через одну точку. Докажите, что среди частей, на которые эти прямые делят плоскость, найдется хотя бы один угол.

ВверхВниз   Решение


Имеется два правильных пятиугольника с одной общей вершиной. Вершины каждого пятиугольника нумеруются по часовой стрелке цифрами от 1 до 5, причём в общей вершине ставится цифра 1. Вершины с одинаковыми номерами соединены прямыми. Доказать, что полученные четыре прямые пересекаются в одной точке.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 58020

Тема:   [ Центр поворотной гомотетии ]
Сложность: 3+
Классы: 9

а) Пусть P — точка пересечения прямых AB и A1B1. Докажите, что если среди точек A, B, A1, B1 и P нет совпадающих, то общая точка описанных окружностей треугольников PAA1 и PBB1 является центром поворотной гомотетии, переводящей точку A в A1, а точку B в B1, причем такая поворотная гомотетия единственна.
б) Докажите, что центром поворотной гомотетии, переводящей отрезок AB в отрезок BC, является точка пересечения окружности, проходящей через точку A и касающейся прямой BC в точке B, и окружности, проходящей через точку C и касающейся прямой AB в точке B.
Прислать комментарий     Решение


Задача 58022

Тема:   [ Центр поворотной гомотетии ]
Сложность: 3+
Классы: 9

Постройте центр O поворотной гомотетии с данным коэффициентом k$ \ne$1, переводящей прямую l1 в прямую l2, а точку A1 лежащую на l1, — в точку A2.
Прислать комментарий     Решение


Задача 58021

Темы:   [ Центр поворотной гомотетии ]
[ Задачи на движение ]
Сложность: 4
Классы: 8,9,10,11

По двум пересекающимся прямым с постоянными, но не равными скоростями движутся точки A и B.
Докажите, что существует такая точка P, что в любой момент времени  AP : BP = k,  где k – отношение скоростей.

Прислать комментарий     Решение

Задача 58023

Тема:   [ Центр поворотной гомотетии ]
Сложность: 4
Классы: 9

Докажите, что центр поворотной гомотетии, переводящей отрезок AB в отрезок A1B1, совпадает с центром поворотной гомотетии, переводящей отрезок AA1 в отрезок BB1.
Прислать комментарий     Решение


Задача 78713

Темы:   [ Пятиугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Три точки, лежащие на одной прямой ]
[ Центр поворотной гомотетии ]
[ Правильные многоугольники ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 4
Классы: 8,9,10

Имеется два правильных пятиугольника с одной общей вершиной. Вершины каждого пятиугольника нумеруются по часовой стрелке цифрами от 1 до 5, причём в общей вершине ставится цифра 1. Вершины с одинаковыми номерами соединены прямыми. Доказать, что полученные четыре прямые пересекаются в одной точке.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .