Страница: 1
2 3 >> [Всего задач: 12]
Имеется несколько гирь, общая масса которых равна 1 кг. Каждой гире присвоен
свой номер: 1, 2, 3, .... Доказать, что найдётся такой номер
n, что
масса гири с номером
n строго больше
кг.
Квадрат разрезан на прямоугольники.
Доказать, что сумма площадей кругов, описанных около каждого прямоугольника, не меньше площади круга, описанного около квадрата.
ABCD - вписанный четырехугольник, диагонали которого перпендикулярны.
O - центр описанной окружности четырехугольника
ABCD.
Докажите, что расстояние от точки
O до стороны
AB
равно половине длины стороны
CD.
На плоскости отмечена точка O. Можно ли так расположить на плоскости: а) 5 кругов; б) 4 круга, не покрывающих точку O, чтобы каждый луч с началом в точке O пересекал не менее двух кругов?
На плоскости отмечена точка O. Можно ли так расположить на плоскости а) 7 кругов; б) 6 кругов, не покрывающих точку O, чтобы каждый луч с началом в точке O пересекал не менее трёх кругов?
Страница: 1
2 3 >> [Всего задач: 12]