ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Дан произвольный треугольник ABC и такая прямая l, пересекающая треугольник, что расстояние от неё до точки A равно сумме расстояний до этой прямой от точек B и C (причем B и C лежат по одну сторону от l). Доказать, что все такие прямые проходят через одну точку.

Вниз   Решение


На какое максимальное число частей могут разбить координатную плоскость xOy графики 100 квадратных трехчлёнов вида
y = anx² + bnx + cn  (n = 1, 2, ..., 100)?

ВверхВниз   Решение


Прибор для сравнения чисел  logab  и  logcd  (a, b, c, d > 1)  работает по правилам: если  b > a  и  d > c,  то он переходит к сравнению чисел  logab/a  и  logcd/c  если  b < a  и  d < c,  то он переходит к сравнению чисел  logdc  и  logba;  если  (b − a)(d − c) ≤ 0,  то он выдаёт ответ.
  а) Покажите, как прибор сравнит числа  log2575  и  log65260.
  б) Докажите, что любые два неравных логарифма он сравнит за конечное число шагов.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



Задача 79610

Темы:   [ Обход графов ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 8

Можно ли четыре раза рассадить девять человек за круглым столом так, чтобы никакие двое не сидели рядом более одного раза?

Прислать комментарий     Решение

Задача 79616

Темы:   [ Обход графов ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 9

Можно ли n раз рассадить  2n + 1  человека за круглым столом так, чтобы никакие двое не сидели рядом более одного раза, если  а)  n = 5;  б)  n = 10?

Прислать комментарий     Решение

Задача 79622

Темы:   [ Раскраски ]
[ Многогранники и многоугольники (прочее) ]
[ Выпуклые тела ]
[ Четность и нечетность ]
[ Подсчет двумя способами ]
Сложность: 4+
Классы: 10,11

Каждая грань выпуклого многогранника – многоугольник с чётным числом сторон.
Обязательно ли его рёбра можно раскрасить в два цвета так, чтобы у каждой грани было поровну рёбер разных цветов?

Прислать комментарий     Решение

Задача 79628

Темы:   [ Теория алгоритмов (прочее) ]
[ Цепные (непрерывные) дроби ]
Сложность: 4+
Классы: 10,11

Прибор для сравнения чисел  logab  и  logcd  (a, b, c, d > 1)  работает по правилам: если  b > a  и  d > c,  то он переходит к сравнению чисел  logab/a  и  logcd/c  если  b < a  и  d < c,  то он переходит к сравнению чисел  logdc  и  logba;  если  (b − a)(d − c) ≤ 0,  то он выдаёт ответ.
  а) Покажите, как прибор сравнит числа  log2575  и  log65260.
  б) Докажите, что любые два неравных логарифма он сравнит за конечное число шагов.

Прислать комментарий     Решение

Задача 79620

Темы:   [ Взвешивания ]
[ Разбиения на пары и группы; биекции ]
[ Оценка + пример ]
Сложность: 4+
Классы: 8,9,10

Каково наименьшее число гирь в наборе, который можно разложить и на 4, и на 5, и на 6 кучек равной массы?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .