ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На доске написано 5 чисел. Сложив их попарно, получили числа: 0, 2, 4, 4, 6, 8, 9, 11, 13 и 15. Какие это числа?

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 181]      



Задача 79641  (#6.6)

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 3+
Классы: 6,7,8

На доске написано 5 чисел. Сложив их попарно, получили числа: 0, 2, 4, 4, 6, 8, 9, 11, 13 и 15. Какие это числа?
Прислать комментарий     Решение


Задача 79642  (#7.1)

Темы:   [ Уравнения в целых числах ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9

Пусть S(x) – сумма цифр натурального числа x. Решите уравнение  x + S(x) = 2001.

Прислать комментарий     Решение

Задача 79643  (#7.2)

Темы:   [ НОД и НОК. Взаимная простота ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7

Существуют ли шесть таких последовательных натуральных чисел, что наименьшее общее кратное первых трёх из них больше, чем наименьшее общее кратное трёх следующих?

Прислать комментарий     Решение

Задача 86486  (#7.3)

Темы:   [ Десятичная система счисления ]
[ Задачи-шутки ]
Сложность: 2+
Классы: 7,8

Назовем натуральное число "замечательным", если оно самое маленькое среди натуральных чисел с такой же, как у него, суммой цифр. Чему равна сумма цифр две тысячи первого замечательного числа?
Прислать комментарий     Решение


Задача 86487  (#7.4)

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Обыкновенные дроби ]
[ Разбиения на пары и группы; биекции ]
Сложность: 2+
Классы: 7,8

Докажите, что   ½ – ⅓ + ¼ – ⅕ + ... + 1/981/99 + 1/100 > ⅕.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .