ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Клетчатый бумажный квадрат 8×8 согнули несколько раз по линиям клеток так, что получился квадратик 1×1. Его разрезали по отрезку, соединяющему середины двух противоположных сторон квадратика. На сколько частей мог при этом распасться квадрат?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 86100  (#1)

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 2+
Классы: 6,7,8

Найти хотя бы одно целочисленное решение уравнения  a²b² + a² + b² + 1 = 2005.

Прислать комментарий     Решение

Задача 86101  (#2)

Темы:   [ Наглядная геометрия ]
[ Разные задачи на разрезания ]
Сложность: 3
Классы: 7,8

Клетчатый бумажный квадрат 8×8 согнули несколько раз по линиям клеток так, что получился квадратик 1×1. Его разрезали по отрезку, соединяющему середины двух противоположных сторон квадратика. На сколько частей мог при этом распасться квадрат?

Прислать комментарий     Решение

Задача 86102  (#3)

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Ортоцентр и ортотреугольник ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9,10

Высоты AA' и BB' треугольника ABC пересекаются в точке H. Точки X и Y – середины отрезков AB и CH соответственно.
Доказать, что прямые XY и A'B' перпендикулярны.

Прислать комментарий     Решение

Задача 86103  (#4)

Тема:   [ Четность и нечетность ]
Сложность: 3+
Классы: 7,8,9

По кругу расставлены 2005 натуральных чисел.
Доказать, что найдутся два соседних числа, после выкидывания которых оставшиеся числа нельзя разбить на две группы с равной суммой.

Прислать комментарий     Решение

Задача 86104  (#5)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Круг, сектор, сегмент и проч. ]
[ Наглядная геометрия ]
Сложность: 4-
Классы: 8,9,10

Разрежьте круг на несколько равных частей так, чтобы центр круга не лежал на границе хотя бы одной из них.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .