Страница: 1
2 >> [Всего задач: 6]
Задача
86106
(#1)
|
|
Сложность: 3+ Классы: 8,9,10
|
Дискриминанты трёх приведённых квадратных трёхчленов равны 1, 4 и 9.
Докажите, что можно выбрать по одному корню каждого из них так, чтобы их сумма равнялась сумме оставшихся корней.
Задача
86107
(#2)
|
|
Сложность: 3+ Классы: 7,8,9
|
Существует ли 2005 таких различных натуральных чисел, что сумма любых 2004 из них делится на оставшееся число?
|
|
Сложность: 4- Классы: 9,10,11
|
Окружность Ω1 проходит через центр окружности Ω2. Из точки C, лежащей на Ω1, проведены касательные к Ω2, вторично пересекающие Ω1 в точках A и B. Докажите, что отрезок AB перпендикулярен линии центров окружностей.
Задача
86109
(#4)
|
|
Сложность: 4 Классы: 8,9,10
|
Верно ли, что любой треугольник можно разрезать на 1000 частей, из которых можно сложить квадрат?
Задача
86110
(#5)
|
|
Сложность: 4 Классы: 9
|
На окружности расставлено n цифр, отличных от 0. Сеня и Женя переписали себе в тетрадки n – 1 цифру, читая их по часовой стрелке. Оказалось, что хотя они начали с разных мест, записанные ими (n–1)-значные числа совпали. Докажите, что окружность можно разрезать на несколько дуг так, чтобы записанные на дугах цифры образовывали одинаковые числа.
Страница: 1
2 >> [Всего задач: 6]