ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Восстановите цифры. Восстановите цифры в следующем примере на деление


   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 202]      



Задача 88290

Темы:   [ Арифметические действия. Числовые тождества ]
[ Признаки делимости на 3 и 9 ]
Сложность: 2+
Классы: 7,8

Обозначим сумму трёх последовательных натуральных чисел через a, а сумму трёх следующих за ними чисел – через b.
Может ли произведение ab равняться 1111111111?

Прислать комментарий     Решение

Задача 88315

Темы:   [ Десятичная система счисления ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 2+
Классы: 7,8

Докажите, что в десятичной записи чисел 19902003 и  19902003 + 22003  одинаковое число цифр.

Прислать комментарий     Решение

Задача 88324

Тема:   [ Математическая логика (прочее) ]
Сложность: 2+
Классы: 6,7

Команды А, Б, В, Г и Д участвовали в эстафете. До соревнований пять болельщиков, высказали следующие прогнозы.
  1) команда Д займет 1-е место, команда В – 2-е;
  2) команда А займет 2-е место, Г – 4-е;
  3) В – 3-е место, Д – 5-е;
  4) В – 1-е место, Г – 4-е;
  5) А – 2-е место, В – 3-е.
В каждом прогнозе одна часть подтвердилась, а другая – нет. Какое место заняла каждая из команд?

Прислать комментарий     Решение

Задача 88325

Темы:   [ Математическая логика (прочее) ]
[ Турниры и турнирные таблицы ]
Сложность: 2+
Классы: 6,7,8

В забеге шести спортсменов Андрей отстал от Бориса и еще от двух спортсменов. Виктор финишировал после Дмитрия, но ранее Геннадия. Дмитрий опередил Бориса, но все же пришел после Евгения. Какое место занял каждый спортсмен?

Прислать комментарий     Решение

Задача 88334

Тема:   [ Ребусы ]
Сложность: 2+
Классы: 6,7,8

Восстановите цифры. Восстановите цифры в следующем примере на деление


Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 202]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .