ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

На полосе бумаги написаны подряд 60 знаков: "×" и "0". Эту полоску разрезают на куски с симметричным расположением знаков. Например:
0,  × ×,  0 × × × × 0,  × 0 ×,  ... .
  а) Докажите, что существует такой способ разрезания, при котором кусков не больше 24.
  б) Приведите пример такого расположения знаков, при котором меньше 15 кусков получить нельзя.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 97790  (#1)

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Подсчет двумя способами ]
[ Показательные функции и логарифмы (прочее) ]
[ Раскладки и разбиения ]
Сложность: 4
Классы: 10,11

Докажите для каждого натурального числа  n > 1  равенство:   [n1/2] + [n1/3] + ... + [n1/n] = [log2n] + [log3n] + ... + [lognn].

Прислать комментарий     Решение

Задача 97791  (#2)

Темы:   [ Остовы многогранных фигур ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

Существует ли многогранник (не обязательно выпуклый), полных список рёбер которого имеет вид: AB, AC, BC, BD, CD, DE, EF, EG, FG, FH, GH, AH (на рисунке приведена схема соединения рёбер)?

Прислать комментарий     Решение

Задача 97792  (#3)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Перебор случаев ]
Сложность: 4
Классы: 8,9

Автор: Фольклор

На полосе бумаги написаны подряд 60 знаков: "×" и "0". Эту полоску разрезают на куски с симметричным расположением знаков. Например:
0,  × ×,  0 × × × × 0,  × 0 ×,  ... .
  а) Докажите, что существует такой способ разрезания, при котором кусков не больше 24.
  б) Приведите пример такого расположения знаков, при котором меньше 15 кусков получить нельзя.

Прислать комментарий     Решение

Задача 97793  (#4)

Темы:   [ Правильные многоугольники ]
[ Правильный тетраэдр ]
[ Линейные зависимости векторов ]
Сложность: 5+
Классы: 10,11

а) Из произвольной точки M внутри правильного n-угольника проведены перпендикуляры  MK1, MK2, ..., MKn  к его сторонам (или их продолжениям). Докажите, что      (O – центр n-угольника).

б) Докажите, что сумма векторов, проведённых из любой точки M внутри правильного тетраэдра перпендикулярно к его граням, равна     где O – центр тетраэдра.

Прислать комментарий     Решение

Задача 97794  (#5)

Темы:   [ Топология ]
[ Четность и нечетность ]
Сложность: 5+
Классы: 8,9,10,11

Автор: Фольклор

Марсианское метро на плане имеет вид замкнутой самопересекающейся линии, причём в одной точке может происходить только одно самопересечение. (Линия нигде не касается сама себя.) Доказать, что тоннель с таким планом можно прорыть так, что поезд будет проходить попеременно под и над пересекающей линией.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .