ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Турниры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Из чисел 1, 2, 3, ..., 1985 выбрать наибольшее количество чисел так, чтобы разность любых двух выбранных чисел не была простым числом. ![]() |
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 1703]
Из чисел 1, 2, 3, ..., 1985 выбрать наибольшее количество чисел так, чтобы разность любых двух выбранных чисел не была простым числом.
Даны три действительных числа: a, b и c. Известно, что a + b + c > 0, ab + bc + ca > 0, abc > 0. Докажите, что a > 0, b > 0 и c > 0.
Кошка ловит мышку в лабиринтах А, Б, В. Кошка ходит первой, начиная с узла, отмеченного буквой "К". Затем ходит мышка (из узла "М"), затем опять кошка и т. д. Из любого узла кошка и мышка ходят в любой соседний узел. Если в какой-то момент кошка и мышка оказываются в одном узле, кошка ест мышку. Сможет ли кошка поймать мышку в каждом из случаев А, Б, В?
Дан выпуклый четырёхугольник и точка M внутри него. Доказать, что сумма расстояний от точки M до вершин четырёхугольника меньше суммы попарных расстояний между вершинами четырёхугольника.
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 1703] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |