Страница:
<< 31 32 33 34
35 36 37 >> [Всего задач: 1703]
|
|
Сложность: 3 Классы: 7,8,9,10
|
Имеется два трёхлитровых сосуда. В одном 1 л воды, в другом – 1 л
двухпроцентного раствора поваренной соли. Разрешается переливать любую часть
жидкости из одного сосуда в другой, после чего перемешивать. Можно ли за
несколько таких переливаний получить полуторапроцентный раствор в том сосуде,
в котором вначале была вода?
|
|
Сложность: 3 Классы: 7,8,9
|
В левый нижний угол шахматной доски 8×8 поставлено в форме квадрата 3×3 девять фишек. Фишка может прыгать на свободное поле через рядом стоящую фишку, то есть симметрично отражаться относительно её центра (прыгать можно по вертикали, горизонтали и диагонали). Можно ли за некоторое количество таких ходов поставить все фишки вновь в форме квадрата 3×3, но в другом углу:
а) левом верхнем,
б) правом верхнем?
|
|
Сложность: 3 Классы: 7,8,9
|
Круг радиуса 1 покрыт семью одинаковыми кругами. Докажите, что их радиус не меньше ½.
Даны три неотрицательных числа a, b, c. Про них известно, что
a4 + b4 + c4 ≤ 2(a²b² + b²c² + c²a²).
а) Докажите, что каждое из них не больше суммы двух других.
б) Докажите, что a² + b² + c² ≤ 2(ab + bc + ca).
в) Следует ли из неравенства пункта б) исходное неравенство?
|
|
Сложность: 3 Классы: 8,9,10
|
В центре квадратного бассейна находится мальчик, а в вершине на берегу стоит
учительница. Максимальная скорость мальчика в воде в три раза меньше максимальной скорости учительницы на суше. Учительница плавать не умеет, а на берегу мальчик бегает быстрее учительницы. Сможет ли мальчик убежать?
Страница:
<< 31 32 33 34
35 36 37 >> [Всего задач: 1703]