ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В компании из k человек (k > 3) у каждого появилась новость, известная ему одному. За один телефонный разговор двое сообщают друг другу все известные им новости. Докажите, что за 2k – 4 разговора все они могут узнать все новости.

Вниз   Решение


На левую чашу весов положили две круглых монеты, а на правую — ещё одну, так что весы оказались в равновесии. А какая из чаш перевесит, если каждую из монет заменить шаром того же радиуса? (Все шары и монеты изготовлены целиком из одного и того же материала, все монеты имеют одинаковую толщину.)

ВверхВниз   Решение


Замените буквы цифрами (все цифры должны быть различными) так, чтобы получилось верное равенство:   A : B : C + D : E : F + G : H : I = 1.

ВверхВниз   Решение


У Гриши есть 5000 рублей. В магазине продаются шоколадные зайцы по цене 45 рублей за штуку. Чтобы отнести зайцев домой, Грише придется купить ещё несколько сумок по 30 рублей за штуку. В одну сумку помещается не более 30 шоколадных зайцев. Гриша купил наибольшее возможное количество зайцев и достаточное количество сумок, чтобы донести в них всех зайцев. Сколько денег осталось у Гриши?

ВверхВниз   Решение


Говорящие весы произносят вес, округлив его до целого числа килограммов (по правилам округления: если дробная часть меньше 0,5, то число округляется вниз, а иначе – вверх; например, 3,5 округляется до 4). Вася утверждает, что, взвешиваясь на этих весах с одинаковыми бутылками, он получил такие ответы весов:

Могло ли такое быть?

ВверхВниз   Решение


Докажите, что

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 32125  (#01)

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Системы точек ]
Сложность: 3
Классы: 7,8,9

На плоскости отмечены четыре точки. Докажите, что их можно разбить на две группы так, что эти группы точек нельзя будет отделить одну от другой никакой прямой.

Прислать комментарий     Решение


Задача 98102  (#02)

 [Летучая ладья]
Темы:   [ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8

На шахматной доске 4×4 расположена фигура – "летучая ладья", которая ходит так же, как обычная ладья, но не может за один ход стать на поле, соседнее с предыдущим. Может ли она за 16 ходов обойти всю доску, становясь на каждое поле по разу, и вернуться на исходное поле?

Прислать комментарий     Решение

Задача 98103  (#03)

Темы:   [ Цепные (непрерывные) дроби ]
[ Обыкновенные дроби ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 7,8,9

Докажите, что

Прислать комментарий     Решение

Задача 32128  (#04)

Темы:   [ Свойства модуля. Неравенство треугольника ]
[ Принцип крайнего (прочее) ]
Сложность: 3-
Классы: 7,8,9

По окружности стоит 6 чисел; каждое равно модулю разности двух чисел, стоящих после него по часовой стрелке. Сумма всех чисел равна 1.

a) Найдите набор чисел, удовлетворяющий данному условию.

б) Сколько различных таких наборов существует? Решения, получающиеся друг из друга поворотом окружности, считаются одинаковыми.

Прислать комментарий     Решение


Задача 32129  (#05)

Темы:   [ Пересекающиеся окружности ]
[ Угол между касательной и хордой ]
[ Вписанный угол равен половине центрального ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10

Через центр окружности  ω 1 проведена окружность  ω 2; A и B — точки пересечения окружностей. Касательная к окружности  ω 2 в точке B пересекает окружность  ω 1 в точке C. Докажите, что AB = BC.

Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .