Страница: 1
2 >> [Всего задач: 6]
Задача
98137
(#1)
|
|
Сложность: 3+ Классы: 8,9
|
Докажите, что произведение всех целых чисел от 21917 + 1 до 21991 – 1 включительно не есть квадрат целого числа.
Задача
98138
(#2)
|
|
Сложность: 4- Классы: 10,11
|
Внутри окружности радиуса 1 расположена замкнутая ломаная (самопересекающаяся), содержащая 51 звено, причём известно, что длина каждого
звена равна . Для каждого угла этой ломаной рассмотрим треугольник, двумя сторонами которого служат звенья ломаной, образующие этот угол (таких треугольников всего 51). Докажите, что сумма площадей этих треугольников не меньше, чем утроенная площадь правильного треугольника, вписанного в окружность.
Задача
98139
(#3)
|
|
Сложность: 4 Классы: 8,9
|
Дана таблица n×n, заполненная числами по следующему правилу: в клетке, стоящей в i-й строке и j-м столбце таблицы записано число В таблице зачеркнули n чисел таким образом, что никакие
два зачёркнутых числа не находятся в одном столбце или в одной строке.
Докажите, что сумма зачёркнутых чисел не меньше 1.
Задача
98140
(#4)
|
|
Сложность: 4- Классы: 10,11
|
Даны три треугольника: A1A2A3, B1B2B3,
C1C2C3. Известно, что их центры тяжести (точки пересечения медиан) лежат на одной прямой, а никакие три из девяти вершин этих треугольников не лежат на одной прямой. Рассматриваются 27 треугольников вида AiBjCk, где i, j, k независимо пробегают значения 1, 2, 3. Докажите, что эти 27 треугольников можно разбить на две группы так, что сумма площадей треугольников первой группы будет равна сумме площадей треугольников второй группы.
Задача
98141
(#5)
|
|
Сложность: 4 Классы: 7,8,9
|
Имеется 100 серебряных монет, упорядоченных по весу, и 101 золотая монета,
они также упорядочены по весу. Известно, что все монеты по весу различны. В нашем
распоряжении – двухчашечные весы, позволяющие про каждые две монеты установить, какая тяжелее. Как за наименьшее число взвешиваний найти монету, занимающую среди всех монет 101-е место?
Страница: 1
2 >> [Всего задач: 6]