ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны две прямые, пересекающиеся в точке O. Найдите ГМТ X, для которых сумма длин проекций отрезков OX на эти прямые постоянна. ![]() ![]() В строку выписаны 40 знаков: 20 крестиков и 20 ноликов. За один ход можно поменять местами любые два соседних знака. За какое наименьшее количество ходов можно гарантированно добиться того, чтобы какие-то 20 стоящих подряд знаков оказались крестиками? ![]() ![]() ![]() Периоды двух последовательностей – 7 и 13. Какова максимальная длина начального куска, который может у них совпадать? ![]() ![]() |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 43]
Натуральные числа а, b, c и d таковы, что ab = cd. Может ли число a + b + c + d оказаться простым?
Взаимно перпендикулярные прямые l и m пересекаются в точке P окружности так, что они разбивают окружность на три дуги. Отметим на каждой дуге такую точку, что проведённая через неё касательная к окружности пересекается с прямыми l и m в точках равноотстоящих от точки касания. Докажите, что три отмеченные точки являются вершинами равностороннего треугольника.
В Простоквашинской начальной школе учится всего 20 детей. У каждых двух из них есть общий дед.
В ящиках лежат орехи. Известно, что в среднем в каждом ящике 10 орехов, а среднее арифметическое квадратов чисел орехов в ящиках меньше 1000. Докажите, что по крайней мере 10% ящиков не пустые.
Периоды двух последовательностей – 7 и 13. Какова максимальная длина начального куска, который может у них совпадать?
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 43] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |