Страница: 1
2 >> [Всего задач: 10]
Задача
98279
(#М1536)
|
|
Сложность: 4 Классы: 8,9
|
а) Существуют ли два равных семиугольника, все вершины которых совпадают, но никакие стороны не совпадают?
б) А три таких семиугольника?
Задача
98286
(#М1537)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Дано n чисел, p – их произведение. Разность между p и каждым из этих чисел – нечётное число. Докажите, что все данные n чисел иррациональны.
Задача
98287
(#М1538)
|
|
Сложность: 4- Классы: 10,11
|
Прямоугольник разбит на прямоугольные треугольники, граничащие друг с другом
только по целым сторонам, так, что общая сторона двух треугольников всегда
служит катетом одного и гипотенузой другого. Докажите, что отношение большей стороны прямоугольника к меньшей не менее 2.
Задача
98228
(#М1539)
|
|
Сложность: 4 Классы: 8,9
|
Капитан нашёл Остров Сокровищ, имеющий форму круга. На его берегу растут шесть пальм. Капитан знает, что клад закопан в середине отрезка, соединяющего ортоцентры треугольников ABC и DEF, где A, B, C, D, E, F – эти шесть пальм, но он не знает, какой буквой обозначена каждая пальма. Докажите, что тем не менее он может найти клад с первой же попытки.
Задача
98278
(#М1540)
|
|
Сложность: 4- Классы: 7,8,9
|
В компанию из n человек пришёл журналист. Ему известно, что в этой компании есть человек Z, который знает всех остальных членов компании, но его не знает никто. Журналист может к каждому члену компании обратиться с вопросом: "Знаете ли вы такого-то?"
а) Может ли журналист установить, кто из компании есть Z, задав
менее n вопросов?
б) Найдите наименьшее количество вопросов, достаточное для того,
чтобы наверняка найти Z, и докажите, что меньшим числом вопросов обойтись нельзя.
(Все отвечают на вопросы правдиво. Одному человеку можно задавать несколько
вопросов.)
Страница: 1
2 >> [Всего задач: 10]