ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Вневписанные окружности касаются сторон AC и BC треугольника ABC в точках K и L. Докажите, что прямая, соединяющая середины KL и AB,
  а) делит периметр треугольника ABC пополам;
  б) параллельна биссектрисе угла ACB.

   Решение

Задачи

Страница: 1 [Всего задач: 3]      



Задача 98446  (#М1726)

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9

На плоскости проведено n прямых. Каждая пересекается ровно с 1999 другими. Найдите все n, при которых это возможно.

Прислать комментарий     Решение

Задача 98458  (#М1727)

Темы:   [ Последовательности (прочее) ]
[ Процессы и операции ]
[ Десятичная система счисления ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9

Неутомимые Фома и Ерёма строят последовательность. Сначала в последовательности одно натуральное число. Затем они по очереди выписывают следующие числа: Фома получает очередное число, прибавляя к предыдущему любую из его цифр, а Ерёма – вычитая из предыдущего любую из его цифр. Докажите, что какое-то число в этой последовательности повторится не меньше 100 раз.

Прислать комментарий     Решение

Задача 98463  (#М1728)

Темы:   [ Вневписанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Средняя линия трапеции ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Вневписанные окружности касаются сторон AC и BC треугольника ABC в точках K и L. Докажите, что прямая, соединяющая середины KL и AB,
  а) делит периметр треугольника ABC пополам;
  б) параллельна биссектрисе угла ACB.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .