ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) 100 гирек веса 1, 2, ..., 100 г разложили на две чаши весов так, что есть равновесие. б) Рассмотрим такие n, что набор гирь 1, 2, ... , n г можно
разделить на две части, равные по весу. |
Страница: 1 2 >> [Всего задач: 7]
При каких n > 2 можно расставить целые числа от 1 до n по кругу так, чтобы сумма каждых двух соседних чисел делилась нацело на следующее за ними по часовой стрелке?
На прямоугольном листе бумаги отмечены
Неутомимые Фома и Ерёма строят последовательность. Сначала в последовательности одно натуральное число. Затем они по очереди выписывают следующие числа: Фома получает очередное число, прибавляя к предыдущему любую из его цифр, а Ерёма – вычитая из предыдущего любую из его цифр. Докажите, что какое-то число в этой последовательности повторится не меньше 100 раз.
Вневписанные окружности касаются сторон AC и BC треугольника ABC в точках K и L. Докажите, что прямая, соединяющая середины KL и AB,
а) 100 гирек веса 1, 2, ..., 100 г разложили на две чаши весов так, что есть равновесие. б) Рассмотрим такие n, что набор гирь 1, 2, ... , n г можно
разделить на две части, равные по весу.
Страница: 1 2 >> [Всего задач: 7] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|