ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Для натуральных чисел x и y число  x² + xy + y²  в десятичной записи оканчивается нулем. Докажите, что оно оканчивается хотя бы двумя нулями.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 98558  (#1)

Темы:   [ Десятичная система счисления ]
[ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10,11

Для натуральных чисел x и y число  x² + xy + y²  в десятичной записи оканчивается нулем. Докажите, что оно оканчивается хотя бы двумя нулями.

Прислать комментарий     Решение

Задача 98562  (#2)

Темы:   [ Свойства параллельного переноса ]
[ Симметрия помогает решить задачу ]
[ Композиции движений. Теорема Шаля ]
Сложность: 3+
Классы: 9,10,11

Из бумаги вырезали два одинаковых треугольника ABC и A'B'C' и положили их на стол, перевернув при этом один из треугольников.
Докажите, что середины отрезков AA', BB' и CC' лежат на одной прямой.

Прислать комментарий     Решение

Задача 98563  (#3)

Темы:   [ Взвешивания ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 4-
Классы: 9,10,11

Есть шесть кусков сыра разного веса. Известно, что можно разложить сыр на две кучки по три куска так, чтобы кучки весили поровну.
Как можно сделать это за два взвешивания на чашечных весах без гирь, если про любые два куска на глаз видно, какой весит больше?

Прислать комментарий     Решение

Задача 98564  (#4)

Темы:   [ Числовые таблицы и их свойства ]
[ Шахматные доски и шахматные фигуры ]
[ Правило произведения ]
Сложность: 4-
Классы: 9,10,11

Сколькими способами можно расставить числа от 1 до 100 в прямоугольнике 2×50 так, чтобы каждые два числа, различающиеся на 1, всегда попадали бы в клетки с общей стороной?

Прислать комментарий     Решение

Задача 98565  (#5)

Темы:   [ Правильная призма ]
[ Сечения, развертки и остовы (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Существует ли правильная треугольная призма, которую можно оклеить (без наложений) различными равносторонними треугольниками? (Разрешается перегибать треугольники через рёбра призмы.)

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .