ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Занятие:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Треугольник можно разрезать на три подобных друг другу треугольника. ![]() ![]() Прямые PA и PB касаются окружности с центром O (A и B — точки касания). Проведена третья касательная к окружности, пересекающая отрезки PA и PB в точках X и Y. Докажите, что величина угла XOY не зависит от выбора третьей касательной. ![]() ![]() ![]() В одной из вершин куба ABCDEFGH сидит заяц, но охотникам он не виден. Три охотника стреляют залпом, при этом они могут ''поразить'' любые три вершины куба. Если они не попадают в зайца, то до следующего залпа заяц перебегает в одну из трёх соседних (по ребру) вершин куба. Укажите, как стрелять охотникам, чтобы обязательно попасть в зайца за четыре залпа. (В решении достаточно написать четыре тройки вершин, в которые последовательно стреляют охотники.)
![]() ![]() ![]() Используя пять двоек, арифметические действия и возведение в степень, составьте числа от 11 до 15. ![]() ![]() |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 100]
Чётными или нечётными будут сумма и произведение:
Отличник Поликарп составлял максимальное пятизначное число, которое состоит из различных нечётных цифр. Двоечник Колька составлял минимальное пятизначное число, которое состоит из различных чётных цифр. Какие числа должны были составить Поликарп и Колька?
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 100] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |