Страница: 1
2 >> [Всего задач: 7]
|
|
Сложность: 4 Классы: 8,9,10
|
Отрезок
MN, параллельный стороне
CD
четырехугольника
ABCD, делит его площадь пополам (точки
M
и
N лежат на сторонах
BC и
AD). Длины отрезков,
проведенных из точек
A и
B параллельно
CD до пересечения
с прямыми
BC и
AD, равны
a и
b. Докажите,
что
MN2 = (
ab +
c2)/2, где
c =
CD.
|
|
Сложность: 4 Классы: 8,9,10
|
Каждая из трех прямых делит площадь фигуры
пополам. Докажите, что часть фигуры, заключенная внутри
треугольника, образованного этими прямыми, имеет площадь,
не превосходящую 1/4 площади всей фигуры.
|
|
Сложность: 4 Классы: 9,10,11
|
а) Докажите, что любая прямая, делящая пополам площадь и периметр треугольника, проходит через центр вписанной окружности.
б) Докажите аналогичное утверждение для любого описанного многоугольника.
|
|
Сложность: 5- Классы: 8,9,10
|
Прямая l делит площадь выпуклого многоугольника пополам. Докажите, что эта прямая делит проекцию данного многоугольника на прямую, перпендикулярную l, в отношении, не превосходящем 1 + .
|
|
Сложность: 5- Классы: 9,10,11
|
Докажите, что любой выпуклый многоугольник можно разрезать двумя взаимно перпендикулярными прямыми на четыре фигуры равной площади.
Страница: 1
2 >> [Всего задач: 7]