ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 363]      



Задача 64821

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Правильная пирамида ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Правильный тетраэдр обладает таким свойством: для каждых двух его вершин найдётся третья вершина, образующая с этими двумя правильный треугольник. Существуют ли другие многогранники, обладающие этим свойством?

Прислать комментарий     Решение

Задача 65419

Темы:   [ Математическая логика (прочее) ]
[ Средние величины ]
Сложность: 4-
Классы: 9,10,11

В зоопарке жили 200 попугаев. Однажды они по очереди сделали по одному заявлению. Начиная со второго, все заявления были "Среди сделанных ранее заявлений ложных – более 70%". Сколько всего ложных заявлений сделали попугаи?

Прислать комментарий     Решение

Задача 65420

Темы:   [ Правильный тетраэдр ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Разрежьте правильный тетраэдр на равные многогранники с шестью гранями.

Прислать комментарий     Решение

Задача 98230

Темы:   [ Принцип Дирихле (прочее) ]
[ Теория графов (прочее) ]
Сложность: 4-
Классы: 7,8,9

В Простоквашинской начальной школе учится всего 20 детей. У каждых двух из них есть общий дед.
Докажите, что у одного из дедов в этой школе учится не менее 14 внуков и внучек.

Прислать комментарий     Решение

Задача 107609

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Средняя линия треугольника ]
[ Медиана, проведенная к гипотенузе ]
[ Отношение площадей подобных треугольников ]
Сложность: 4-
Классы: 8,9,10

Ma, Mb, Mc – середины сторон, Ha, Hb, Hc – основания высот треугольника ABC площади S.
Доказать, что из отрезков MaHb, MbHc, McHa можно составить треугольник, найти его площадь.

Прислать комментарий     Решение

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 363]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .