Страница: 1 [Всего задач: 4]
Задача
98128
(#М1351)
|
|
Сложность: 4- Классы: 8,9
|
Пусть в прямоугольном треугольнике AB и AC – катеты, AC > AB. На AC выбрана точка E, а на BC – точка D так, что AB = AE = BD.
Докажите, что треугольник ADE прямоугольный тогда и только тогда, когда стороны треугольника ABC относятся как 3 : 4 : 5.
Задача
98127
(#М1352)
|
|
Сложность: 3- Классы: 7,8,9
|
n чисел (n > 1) называются близкими, если каждое из них меньше чем сумма всех чисел, делённая на n – 1. Пусть a, b, c, ... – n близких чисел, S – их сумма. Докажите, что
а) все они положительны;
б) a + b > c;
в) a + b > S/n–1.
Задача
98139
(#М1353)
|
|
Сложность: 4 Классы: 8,9
|
Дана таблица n×n, заполненная числами по следующему правилу: в клетке, стоящей в i-й строке и j-м столбце таблицы записано число В таблице зачеркнули n чисел таким образом, что никакие
два зачёркнутых числа не находятся в одном столбце или в одной строке.
Докажите, что сумма зачёркнутых чисел не меньше 1.
Задача
98140
(#М1354)
|
|
Сложность: 4- Классы: 10,11
|
Даны три треугольника: A1A2A3, B1B2B3,
C1C2C3. Известно, что их центры тяжести (точки пересечения медиан) лежат на одной прямой, а никакие три из девяти вершин этих треугольников не лежат на одной прямой. Рассматриваются 27 треугольников вида AiBjCk, где i, j, k независимо пробегают значения 1, 2, 3. Докажите, что эти 27 треугольников можно разбить на две группы так, что сумма площадей треугольников первой группы будет равна сумме площадей треугольников второй группы.
Страница: 1 [Всего задач: 4]