Страница: 1 [Всего задач: 5]
Задача
79294
(#1)
|
|
Сложность: 3 Классы: 7,8,9,10
|
Найти все действительные решения уравнения с четырьмя неизвестными: x² + y² + z² + t² = x(y + z + t).
Задача
79295
(#2)
|
|
Сложность: 3+ Классы: 10,11
|
Точка
A расположена на расстоянии 50 см от центра круга радиуса 1 см.
Разрешается точку
A отразить симметрично относительно произвольной прямой,
пересекающей круг; полученную точку отразить симметрично относительно любой
прямой, пересекающей круг, и т.д. Доказать, что: а) за 25 отражений точку
A
можно переместить внутрь круга; б) за 24 отражения этого сделать нельзя.
Задача
79296
(#3)
|
|
Сложность: 3- Классы: 7,8,9
|
Натуральные числа a, b, c таковы, что числа p = bc + a, q = ab + c, r = ca + b простые. Доказать, что два из чисел p, q, r равны между собой.
Задача
79297
(#4)
|
|
Сложность: 3+ Классы: 8,9,10
|
На шахматной доске размером 8×8 отмечены 64 точки — центры всех
клеток. Можно ли отделить все точки друг от друга, проведя 13 прямых, не
проходящих через эти точки?
Задача
79298
(#5)
|
|
Сложность: 4+ Классы: 9,10,11
|
Можно ли разместить в пространстве четыре свинцовых шара и точечный источник
света так, чтобы каждый исходящий из источника света луч пересекал хотя бы
один из шаров?
Страница: 1 [Всего задач: 5]