ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 79294  (#1)

Темы:   [ Выделение полного квадрата. Суммы квадратов ]
[ Алгебраические уравнения и системы уравнений (прочее) ]
Сложность: 3
Классы: 7,8,9,10

Найти все действительные решения уравнения с четырьмя неизвестными:   x² + y² + z² + t² = x(y + z + t).

Прислать комментарий     Решение

Задача 79295  (#2)

Темы:   [ Свойства симметрий и осей симметрии ]
[ Обратный ход ]
Сложность: 3+
Классы: 10,11

Точка A расположена на расстоянии 50 см от центра круга радиуса 1 см. Разрешается точку A отразить симметрично относительно произвольной прямой, пересекающей круг; полученную точку отразить симметрично относительно любой прямой, пересекающей круг, и т.д. Доказать, что: а) за 25 отражений точку A можно переместить внутрь круга; б) за 24 отражения этого сделать нельзя.
Прислать комментарий     Решение


Задача 79296  (#3)

Темы:   [ Простые числа и их свойства ]
[ Четность и нечетность ]
Сложность: 3-
Классы: 7,8,9

Натуральные числа a, b, c таковы, что числа  p = bc + a,  q = ab + c,  r = ca + b  простые. Доказать, что два из чисел p, q, r равны между собой.

Прислать комментарий     Решение

Задача 79297  (#4)

Темы:   [ Разные задачи на разрезания ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Геометрия на клетчатой бумаге ]
Сложность: 3+
Классы: 8,9,10

На шахматной доске размером 8×8 отмечены 64 точки — центры всех клеток. Можно ли отделить все точки друг от друга, проведя 13 прямых, не проходящих через эти точки?
Прислать комментарий     Решение


Задача 79298  (#5)

Темы:   [ Сфера, касающаяся ребер угла ]
[ Примеры и контрпримеры. Конструкции ]
[ Трехгранные и многогранные углы (прочее) ]
Сложность: 4+
Классы: 9,10,11

Можно ли разместить в пространстве четыре свинцовых шара и точечный источник света так, чтобы каждый исходящий из источника света луч пересекал хотя бы один из шаров?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .