Страница: 1 [Всего задач: 4]
Задача
79477
(#1)
|
|
Сложность: 3+ Классы: 8,9,10
|
Найти все значения x, y и z, удовлетворяющие равенству $\sqrt{x-y+z} = \sqrt{x} - \sqrt{y} + \sqrt{z}$.
Задача
79478
(#2)
|
|
Сложность: 4 Классы: 8,9,10
|
В некоторой стране 1985 аэродромов. С каждого из них вылетел самолёт и
приземлился на самом удалённом от места старта аэродроме. Могло ли случиться,
что в результате все 1985 самолётов оказались на 50 аэродромах? (Землю можно
считать плоской, а маршруты прямыми; попарные расстояния между аэродромами предполагаются различными.)
Задача
79479
(#4)
|
|
Сложность: 4- Классы: 10
|
Доказать, что в любой группе из 12 человек можно выбрать двоих, а среди
оставшихся 10 человек еще пятерых так, чтобы каждый из этих пятерых удовлетворял
следующему условию: либо он дружит с обоими выбранными вначале, либо не дружит
ни с одним из них.
Задача
79480
(#5)
|
|
Сложность: 4- Классы: 10
|
Доказать, что любое число 2n, где n = 3, 4, 5, ... можно представить в виде 7x² + y², где x и y – нечётные числа.
Страница: 1 [Всего задач: 4]