ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 1]      



Задача 105156

Темы:   [ Целочисленные и целозначные многочлены ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 3+
Классы: 8,9,10

Существуют ли такие натуральные числа a, b и c, что у каждого из уравнений  ax² + bx + c = 0,  ax + bx – c = 0,  ax² – bx + c = 0,  ax² – bx – c = 0  оба корня – целые?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .