Страница: 1
2 >> [Всего задач: 6]
|
|
Сложность: 3+ Классы: 8,9,10
|
Бесконечная последовательность чисел xn определяется условиями: xn+1 = 1 – |1 – 2xn|, причём 0 ≤ x1 ≤ 1.
Докажите, что последовательность, начиная с некоторого места, периодическая а) в том б) и только в том случае, когда x1 рационально.
|
|
Сложность: 3+ Классы: 10,11
|
Придумайте многогранник, у которого нет трех граней с одинаковым числом
сторон.
|
|
Сложность: 4 Классы: 10,11
|
В круглый бокал, осевое сечение которого — график функции
y =
x4, опускают
вишенку — шар радиуса
r. При каком наибольшем
r шар коснется нижней
точки дна? (Другими словами, каков максимальный радиус
r круга, лежащего в
области
yx4 и содержащего начало координат?)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Рассматривается выпуклый четырёхугольник ABCD. Пары его противоположных сторон продолжены до пересечения: AB и CD – в точке P, CB и DA – в точке Q. Пусть lA, lB, lC и lD – биссектрисы внешних углов четырёхугольника при вершинах соответственно A, B, C, D. Пусть lP и lQ – внешние биссектрисы углов соответственно APD и AQB (то есть биссектрисы углов, дополняющих эти углы до развёрнутого). Обозначим через MAC точку пересечения lA и lC, через MBD – lB и lD, через MPQ – lP и lQ. Докажите, что, если все три точки MAC, MBD и MPQ существуют, то они лежат на одной прямой.
|
|
Сложность: 5- Классы: 9,10,11
|
Докажите, что для любого k > 1 найдётся такая степень двойки, что среди k последних её цифр не менее половины составляют девятки.
(Например, 212 = ...96, 253 = ...992.)
Страница: 1
2 >> [Всего задач: 6]