Страница: 1
2 >> [Всего задач: 7]
|
|
Сложность: 2+ Классы: 7,8,9
|
Докажите, что
|
x| + |
y| + |
z|
|
x +
y -
z| + |
x -
y +
z| + |-
x +
y +
z|,
где
x,
y,
z — действительные числа.
|
|
Сложность: 3+ Классы: 9,10,11
|
Можно ли рёбра n-угольной призмы раскрасить в три цвета так, чтобы на каждой грани были все три цвета и в каждой вершине сходились рёбра разных цветов, если а) n = 1995; б) n = 1996.
|
|
Сложность: 4- Классы: 10,11
|
Разрезать отрезок [–1, 1] на чёрные и белые отрезки так, чтобы интегралы от любой а) линейной функции; б) квадратного трёхчлена по белым и чёрным отрезкам были равны.
В треугольнике
ABC известно, что
AA1
– медиана,
AA2
– биссектриса,
K – такая точка на
AA1
,
для которой
KA2
|| AC . Докажите, что
AA2
KC .
|
|
Сложность: 5- Классы: 8,9,10,11
|
Для какого наибольшего
n можно придумать две бесконечные в обе стороны
последовательности
A и
B такие, что любой кусок последовательности
B
длиной
n содержится в
A,
A имеет период 1995, а
B этим свойством не
обладает (непериодична или имеет период другой длины)?
Комментарий.
Последовательности могут состоять из произвольных символов. Речь идет о
минимальном периоде.
Страница: 1
2 >> [Всего задач: 7]